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The trajectory of a store released from an aircraft is subject to the uncertainty in 

parameters such as inertia properties, aerodynamic coefficients and external factors. 

Extensive Monte-Carlo simulations are conducted for certifying the safety of store 

separation. An enormous amount of data is generated in this process demanding specific 

tools for further analysis. The objective of this work is to develop tools to address questions 

such as (i) what parameters cause un-safe store trajectories (ii) what are the worst-case 

combinations of parameters (iii) how can un-safe trajectories be avoided and (iv) what level 

of parameter uncertainty is acceptable for store certification. Techniques from data mining 

and machine learning tools such as recursive least squares, principal component analysis, K-

means clustering, and probability binning are employed in this work to address these 
questions.  

I. Introduction 

ighter and bomber aircraft carry stores such as missiles, bombs and drop-tanks to execute their missions. Safe 
and acceptable separation of these stores is essential for meeting the mission objectives. The jettisoning systems 

may incorporate mechanical springs, pneumatic actuators and pyrotechnics to ensure that sufficient forces are 

generated to eject the store away from the aircraft. Safe separation requires the store to have a constant or increasing 

vertical velocity with respect to the aircraft, while staying within the attitude and rate limits. Acceptable 

performance requires that the release transients do not cause the store to fail in its mission. Shown in Figure 1 is an 

illustration of acceptable and unacceptable store trajectories. Actual figures are not included in this version of the 

paper as Air Force approval for public release is still pending. The final version of the paper is expected to include 

these figures. 

Due to the variations in the store parameters such as mass, moment of inertia, center of mass location, 

aerodynamic coefficients, and ejection system parameters, no two store trajectories are exactly alike. The objective 

of the store separation trajectory analysis is to establish safe and acceptable operating envelopes for the store based 

on preflight data, and to assure high likelihood of successful flight tests. One at a time variations, Monte-Carlo 
sampling and genetic algorithm searches are conducted to explore the parameter space of the store. 

Initial investigations examine the sensitivity of a few key parameters on the store trajectories to help focus 

attention on the critical regions of the flight envelope. Monte-Carlo simulations are conducted to determine the 

likelihood of safe and acceptable separation in the presence of these parameter variations. Genetic algorithm 

searches are used to iteratively adjust the parameters within the range of expected variability to determine the worst-

case combination of inputs causing unacceptable trajectories. If safe and acceptable performance can be assured 

from these simulation studies, positive flight test outcomes are highly probable. The post-flight trajectory results can 

be back correlated with Monte-Carlo simulations to reconcile with the preflight predictions.  

This analysis process generates enormous number of trajectories, which may contain important relationships, 

not easily discernable by the analyst. Data mining and knowledge discovery (DMKD) techniques [1 - 7] can be 

employed to discover these hidden relationships. These can then be explored using a variety of data visualization 
tools such as 2-D/3-D line plots, bar graphs, contour, mesh and surface plots. Knowledge gained in this manner can 

be used by the analyst as decision aids for generating specifications for store separation systems and for assuring 

high likelihood of success in subsequent flight tests and operations. 
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Figure 1. Store Separation Schematic 

The focus of the present work is analysis of the Monte-Carlo simulation data. Shown in Figure 2 is a schematic 

of the Monte-Carlo simulation. Parameters are sampled from pre-modeled distributions such as normal, uniform and 

empirical. Trajectory corresponding to these parameters is obtained from a six degree of freedom simulation. 

Trajectories thus obtained are analyzed for safe and acceptable behavior.  

• A linear dynamic model approximation based on recursive least squares formulation [8, 9] is presented in 

Section II. The model is further utilized to estimate relative sensitivity of store trajectory to its parameters, 

compute the worst case combination of input parameters and predict the covariance history of the store 

trajectory. 

• Automatic clustering of trajectories based on principal component analysis [10] (PCA) and K-means [10] 

clustering technique is discussed in Section III. Trajectories are clustered in an unsuperivsed manner into 

qualitatively similar groups. 

• Probability binning methodology [11] is used in Section IV to compute the sensitivity of parameters to a 

given failure criteria.  

• A numerical technique called fail-safe clustering is developed in Section V to compute a hypercube in input 

parameter space that is safe with respect to a given failure criteria. 

 

Figure 2. Schematic of the Monte-Carlo Simulation 

II. Linear Model Approximation 

The following will discuss the construction of the linear model from Monte-Carlo simulation data, and then 

show its use in conducting various analyses. The nonlinear 6-DOF equation of motion of the store in discrete time 

can be represented as: 

( ) ( )( )uiXfiX ,1 =+             (1) 
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The nonlinear functions f(.) are the right hand sides of the 6-DOF equations of motion.  These functions consist of 

the forces and moments acting on the store, and kinematic nonlinearities arising from the coordinate 

transformations. In Equation (1), X(i) is the (12 x 1) store state vector: 

[ ]TzyxzyxX φθψφθψ &&&&&&≡             (2) 

This vector consists of the store relative position with respect to the aircraft, velocity, attitude and attitude rates. The 

input vector u represents the parameters of the store and is a constant vector.  

]....................[ 321 muuuuu =                   (3) 

Given the 12 initial conditions and the inputs u, the nonlinear model is used to simulate the store 
trajectories. Although useful for simulations, it is difficult to use this model for any formal analysis due to the 

nonlinearities represented by the functions f(.).  However, following the well-recognized tradition in aeronautics 

[21], these equations can be approximated by a linear model about a nominal trajectory, and then used to derive 

useful results. 

The linear model describes the perturbations of the states from the nominal trajectory.  For the store 

separation problem, the nominal trajectory can be computed by setting all the inputs to their nominal values, and 

carrying out the trajectory simulation with nominal inputs and initial conditions.  Next, individual input components 

are perturbed one by one in both positive and negative directions to generate the variation trajectories. Trajectory 

perturbations are then defined as the difference between a perturbed trajectory and the nominal trajectory. For the 

present development, define the trajectory perturbations as: 

( ) ( ) ( )iXiXi −=δ               (4) 

( )iX  is the nominal trajectory generated using the nominal initial conditions and nominal inputs u , and ( )iX  is the 

trajectory with perturbed inputs u and initial conditions. Define the perturbations in the inputs as: uuU −= .  

Perturbed states are given by the vector δ(i). 
The linear dynamic model defines linear relationships between the input perturbations U and the trajectory 

perturbations δ(i).  This approximate linear relationship can be derived using a Taylor series expansion [21] of the 
right hand sides of the 6-DOF equations of motion about the nominal trajectory, as: 
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The matrices multiplying the state perturbations and the input perturbations are the Jacobian matrices 

evaluated at the nominal values of the states and the inputs. If the system dynamic equations are not explicitly 

available, the given trajectories can be used to numerically construct the linear model, as will be illustrated in the 

following section. 

The linear dynamic system can be expressed in a more compact form as: 

( ) ( ) UBiAi +=+ δδ 1                (6) 

where A (12 x 12 matrix) and B (12 x m matrix) are the Jacobian matrices given by:  
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At any sample instant k, the state perturbations can be computed in terms of initial condition, and the input 

as [22] : 
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In a more compact form: 

( ) ( ) ( ) ( )UkQkQk 21 0 += δδ              (9) 

 The 12×12 matrix Q1(k) relates the perturbations in the initial conditions to the states, while the 12× m 
matrix Q2(k) relates the perturbations in the inputs to the perturbations in the states.   
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If the perturbations in the initial conditions and the inputs are Gaussian, this linear model is sometimes known as the 

Gauss-Markov model [15]. The following sections will first illustrate how the coefficients of the linear model can be 

derived from the given trajectories. 
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A. Recursive Least Squares Formulation 
Recursive Least Squares (RLS) algorithm is used to estimate the A and B matrices in the linear model. The 

advantage of the RLS algorithm when compared to the more familiar batch least squares algorithm is that it can 

handle a large number of trajectories without encountering computer memory problems. Moreover, it offers the 

convenience of being able to refine the estimates of the A and B matrices as new trajectories become available. 

As discussed in the previous section, the linear dynamic model is of the form: 

BUiAi +=+ ][]1[ δδ                       (11) 

Consequently, a complete trajectory can be represented by linear equations of the form: 
                Y = Q*S                      (12) 
Here, the vector Y and the matrix Q are formed by the state components and the vector S is formed by the elements 
of the A and B matrices. 

[ ]TBBAAS ..:),2(:),1(..:),2(:),1(=              (13) 

Such systems of linear equations can be defined for every trajectory used in the variation analysis. Thus: 
Yi = Qi*S                     (14) 

where i = 1 .. n. 
The recursive least squares algorithm is given the following equations [8]:  

[ ]kkkkkk SQYKSS 111 +++ −+=             (15) 
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P(1), the initial value of P is assumed to be a large value. Initial values of A is assumed to be an identity 
matrix,  while all the initial entries of the B matrix are all assumed to be zero. These values are used to define the 
initial value of S.   

The parameter estimation process can be further simplified by recognizing that the store trajectory 
dynamics consists of dynamic and kinematic equations. Since the relationships between these are given by pure 
integrations, only the parameters associated with the dynamic equations need be estimated.  With this fact in view, 
the A and B matrices partitioned into the form:  









=








=

2

1

2221

1211

B

B
B

AA

AA
A           (18) 

with, 

00 11211 =∆== BtIAA  

Only the elements of the sub-matrices A21, A22 and B2 need be estimated by the RLS algorithm. Note that the 
partitioning of the system dynamics into kinematic and dynamic equations reduces the number of parameters to be 
estimated in half. 

This linear model is used to derive a variety of useful results as will be illustrated in the following sections.  

B. Sensitivity to Parameters 
An important step in store separation analysis is that of estimating the relative importance of the input 

components on the trajectory behavior. Although these relationships can be established for any of the trajectory 
parameters, the following development will illustrate the relative importance of the input components on the store 
states.  

The relationship between the input vector and the state vector at any sample instant k was shown in 
Equation (9) to be:  

( ) ( ) ( ) ( )UkQkQk 21 0 += δδ           (19) 

The matrices Q1 and Q2 are time varying. The notation Q1(i, j, k), Q2(i, j, k) will be used to refer to the ith row jth 
column elements of these matrices at the kth time instant. The expressions for individual state components are of the 
form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) mi UkiQUkiQkiQkiQk ,35,.....,1,0,12,.....0,1, 21212111 +++++= δδδ       (20) 

The quantity Q2(i, j, k)  is a measure of the influence of the jth input on the chosen state variable at time k.  However, 
straight forward comparison of two Q2(i, j, k)’s corresponding to two different inputs determined by the choice of 
two j’s  can be misleading. This is due to the fact that the dynamic range of different inputs may be different. 
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In order to enable the comparison between any input components, it is necessary to normalize the input 
variables so that all of them have the same dynamic range. For the present research, normalizing constants for the 
inputs are chosen as their individual standard deviations, thus:  
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==                (21) 

As the mean input has already been subtracted from individual inputs during linearization, normalization 

with individual standard deviations ustd_j maps all inputs to the range of ±3. Rewriting the influence equation in 

terms of the normalized inputs,   
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Rewriting the above equation by grouping the Q2(i, j, k) and the ustd_j terms and defining 
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At any sample k, the input normalized equation allows the direct comparison of the relative influence of the inputs 

on the state perturbations using the coefficients ),,(
~

2 kjiQ . 

 In order to determine the influence of individual inputs over the entire time history of the trajectory, define the 
RMS influence coefficient as: 
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C. Worst-Case Combination of Parameters 
The linear dynamic model can be used to determine the worst-case combinations of inputs that will drive 

the outputs towards the direction of failures. Finding the worst-case combinations are particularly simple if the 
failure cases are defined as maximum or minimum values of the state variables at a specified sample instant.  This 
will be illustrated in the following. 

As shown in Equation (9), the perturbations in the states are related to the input perturbations through the 
linear relationship: 

( ) ( ) ( ) mi UkmiQUkiQTermsCIk ,,.....,1,.. 212 +++=δ          (25) 

Since the input perturbations appear linearly in Equation (25), the values of the input components Uj that maximize 

( )kiδ are given by: 
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The values of the inputs that minimize ( )kiδ  can be determined by simply by reversing the inequalities in the above 

expression. 

D. Uncertainty Prediction 
Monte-Carlo simulation using the nonlinear model can be considered as a methodology for computing the 

statistics of the states, given the statistics of the inputs and the initial conditions. It is known that the statistics of the 
output in terms of expected values and the covariance matrix can be computed algebraically [9] if the system 
dynamics is linear, and if the inputs have Gaussian distributions. 

Since the linear model developed in this section approximates the trajectory dynamics of the store, it can be 
used to obtain approximate results of the Monte-Carlo simulation, without explicitly conducting large number of 
numerical simulations. This semi-analytical computation of the input-output statistical characteristics can be used as 
an initial prediction of the statistics of the outputs, and as the basis for verifying the quality of the Monte-Carlo 
simulations. 

Equation (9) showed that the inputs and the initial conditions are related to the states through a linear 
relationship: 

( ) ( ) ( ) ( )UkQkQk 21 0 += δδ               (27) 
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In order to find the covariance of the states in terms of the covariance of the inputs and initial conditions, first 
compute the quadratic matrix 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }TT
UkQkQUkQkQkk 2121 00 ++= δδδδ          (28) 

Expanding,  
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Taking expectations on both sides, and noting that the perturbation in the inputs U and the perturbation in the initial 

conditions δ(0) are uncorrelated,  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )kQUUEkQkQEkQkkE TTTTT
2211 00 += δδδδ          (30) 

Thus, if the covariance matrix of the input perturbations ( )TUUE  and the covariance matrix of the initial 

condition perturbations ( ) ( )( )00 TE δδ  are known, the covariance matrix of the states ( ) ( )( )kkE Tδδ  at a sample 

instant k can be determined using the above relationship. Note that these computations can be carried out for any set 
of output variables, as long as the linearized equations are available. Shown in Figure 3 is the covariance prediction 
of the vertical velocity. 

 

Figure 3. Covariance Prediction of z&  

III. Automatic Clustering of Trajectories 

Automatic clustering of trajectories attempts to group the Monte-Carlos simulation trajectories into groups of 
similar looking trajectories. Shown in Figure 4 is a flow diagram of the automatic clustering implementation. 
Principal Component Analysis (PCA) followed by K-Means clustering is used in this composite formulation.  

PCA is conducted on the trajectory time histories to reduce their high dimensionality. Length of time 
histories could vary from 50 – 500 depending on the simulation step size and the final time. Those principal 
components that account for 95% of the “energy” associated with all the singular values are included in this work. 
Actual trajectories can be compared with PCA estimated trajectories to estimate the loss of accuracy due to the 
truncation of the principal components. The user can increase the number of principal components if the data loss is 
not acceptable.  

Lower dimensional data resulting from PCA is clustered using the k-means algorithm. Each trajectory is 
assigned to a cluster based on its proximity to the centroid of the cluster. The iterative process involves assignment 
of trajectories based on proximity to centroid, and re-computation of centroids based on the assignment. It 
terminates when no further change in centroid location and trajectory assignment are observed. Clustered trajectories 
can be visually evaluated to determine the merit of cluster assignment. Choice of too few numbers of clusters results 
in trajectory assignment not consistent with the majority in the cluster. On the other hand choice of too many 
clusters results in clusters that are almost identical to each other. 
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Figure 4. Flow Diagram of Automatic Clustering 

E. PCA 
Shown in Figure 5 is the scatter plot of a two dimensional data sample. Principal axes computed using 

singular value decomposition [6] are shown in red color. Principal axes for a full rank square matrix can are the 
eigen vectors. It can be inferred from the figure that variation of data along one of the principal axis is much larger 
than the other. The data points can be projected on to this axis with little loss of accuracy and 50% reduction in the 
size of the data. The reduction is even more significant for higher dimensional systems. 

 

Figure 5. Principal Component Analysis 

As a first step time histories of the chosen variables are stacked in the form of columns of a matrix. Rows 
represent the time instants and columns represent the run numbers. 
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The second step involves the normalizing the data by subtraction of mean from individual rows of the data matrix. 
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Next step involves computing the singular value decomposition of the normalized data matrix: 
T

n USVX =
             

(33)
 

Singular values arranged in descending order: 

[ ]nσσσ .......21             
(34)

 
Selection criteria for number p of principal components based on 95% energy associated with singular values is 
given by: 
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Transformation matrix to lower dimensional space is given by: 

( )TpVT :1:,=             (36) 

Transformation to lower dimensional space is obtained as: 

XTXL =               (37) 

PCA estimated trajectories are computed as: 

               T
pca XTTX =             (38) 

Accuracy loss due to truncation of principal components is given by: 

pcaXXe −=             (39) 

F. K-Means 
Shown in Figure 6 is the flow diagram of the K-Means algorithm. The algorithm uses as input the lower 

dimensional data defined in Eq. (37). Euclidean norm between vectors is used as the distance metric between the 
runs and the centroids.  
 

 

Figure 6. Flow Diagram of k-Means Algorithm 

G. Representative Trajectories 
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Trajectory closest to the cluster centroid is selected as the representative trajectory. Euclidean norm is used as 
the distance metric between two trajectories. The representative trajectory unlike the centroid is a real trajectory with 
a known input. The trajectory and its input can be used to characterize the cluster and the inputs that lead to the 
cluster. Representative trajectories are very useful in characterizing large number of Monte-Carlo trajectories using a 
single representative trajectory. Input corresponding to the representative trajectory can be considered as the 
representative input for the cluster.  

H. Results 
Shown in Figure 7-Figure 10 are the clustering results of pitch attitude trajectories. Note the y-axis of these 

plots is non-dimensionalized. Cluster 1 shown in Figure 8 contains those trajectories where the store pitch attitude 
assumes sustained positive values. Cluster 2 shown in Figure 9 contains trajectories where the pitch attitude mostly 
remains negative. Slightly different from cluster 2 is cluster 3 where the trajectories exhibit a late tendency to pitch 
up as seen in Figure 10. 

 

Figure 7. Pitch Attitude Trajectory Clusters 

 

Figure 8. Cluster 1 

 

 

Figure 9. Cluster 2 

 

Figure 10. Cluster 3 

Representative trajectories for the above three clusters are shown in Figure 11. These three trajectories can be 
considered as qualitative representatives of the 1000 Monte-Carlo trajectories. 

 

Figure 11. Plot of Representative Trajectories 
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IV. Probability Binning 

Probability binning [11] methodology is presented in this section to evaluate the sensitivity of input 
parameters to a prescribed failure criterion. The approach fundamentally involves comparison of the population 
distribution of the parameter with the distribution of those samples that match the prescribed failure criterion. The 
population distribution function is first represented by an equal frequency histogram. This is done by using variable 
width bins that accommodate the same frequency in all the bins. Failed samples are then binned in the unequal width 
equal frequency histogram. A difference metric between the two distributions is then computed which serves as a 
measure of the sensitivity of the particular parameter to the prescribed failure criterion. Parameters whose failed 
sample distribution differs significantly from the population distribution are theorized to be more sensitive to the 
failure criterion. On the contrary parameters whose failed sample distribution is very similar to the population 
distribution are considered insignificant to the chosen mode of failure.  

I. Equal Frequency Histogram 
Standard binning algorithms use bins of equal width for ease of computation. However, it is not necessary for 

the bins to be of equal width. Chi-square statistic computed with equal width bins is weighed towards the 
distribution containing more events making it less sensitive to outlier samples. Choosing the bins to adapt to the 
location of the data is known as “adaptive-binning”. Probability binning is an “adaptive-binning” strategy suggested 
by Roederer et.al [11]. Instead of choosing bins of equal width the reference distribution is divided such that all bins 
have the same number of samples. Therefore, randomly selected sample has an equal probability of falling into any 
of the bins. The resulting bins are of unequal width. Shown in Figure 12 and Figure 13 are the equal width and equal 
frequency histograms of a particular store parameter. The total number of runs in the population is 1000 therefore 
each bin has approximately 100 runs in the equal frequency histogram. 

 

Figure 12. Equal Width Histogram 

 

Figure 13. Equal Frequency Histogram 

J. Sensitivity Metric Computation 
 To compute the sensitivity metric it is first necessary to obtain the samples of the parameters that correspond to a 
given failure criterion. Typically this is a small number. The failed samples are then binned in the equal frequency 
histogram of the entire population. Shown in Figure 14 and Figure 15 are the failed sample distributions (red) 
against the backdrop of the population distribution. The number of failed runs in this example is only 27 therefore 
the small frequencies corresponding to the red bins.  

 

Figure 14. Distribution of a Sensitive Parameter 

 

Figure 15. Distribution of an Insensitive Parameter 

A scalar quantity similar to the chi-squared statistic can be computed to compare the two distributions.  
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Where,  

• Oi is the frequency of the failed samples in the ith bin 

• Ei is the frequency of the population samples in the ith bin 

• ns is the total number of failed samples  

• ne is the total number of population samples in the reference distribution.  
This metric a single scalar quantifies the difference between the two distributions. A large value indicates that 

the sample distribution is significantly different from the population distribution. On the other hand a small value 
indicates that the sample distribution is very similar to the population distribution. The comparison can be done for 
each input parameter one at a time or a combination of inputs. Inputs or combinations of inputs with large 
probability binning metric are theorized to have more impact on the chosen failure criterion than those with small 
probability binning metrics. The probability binning metric can be computed for different inputs and combination of 
inputs. Shown in Figure 16 is a pareto plot of the input components arranged in a descending order of the sensitivity 
metric. The failure criteria used in generating this plot was number of vertical velocity sign flips => 1. 

 

Figure 16. Pareto Plot of the Probability Binning Sensitivity Metric 

 

V. Fail-Safe Clustering 

 The purpose of fail-safe clustering is to compute the acceptable ranges of the parameter components to avoid a 
given mode of failure. Particular approach adopted in this research involves construction of a normalized hypercube 
in the parameter space that includes as many non-failed parameter samples as possible while completely avoiding 
the failed parameter samples. 

K. Fail-Safe Cluster Synthesis 
First step in the synthesis of fail-safe cluster is normalizing of input parameter with individual components that 

have different dynamic ranges. The normalization procedure adopted is as follows: 
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Once normalized all these components lie between -1 to +1. Shown in Figure 17 is a schematic of the fail-safe 
cluster synthesis procedure using only two input components. The approach involves constructing iterative 
hypercubes in the input space that do not enclose any failed inputs. 
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Figure 17. 2D Example of Fail-Safe Cluster Synthesis 

A small region close to the nominal input parameter defined by 

ujjlj uuuH __1 : <<  j = 1 ..n is initially selected, where uj is the jth input parameter and n is dimension of the input 

space. The region is chosen such that it does not enclose any failed parameter samples. It is assumed that the 
nominal parameter vector is a non-failure. Furthermore, it is perfectly reasonable to assume that there exists a small 
region around this nominal vector where no failures are found. 
The chosen region H1 describes a hyper cube in the n dimensional input space and is the first cut estimate of the fail 
safe cluster.  
The center of H1 corresponds to the normalized nominal input which is the zero vector. 
The parameters uj_l and uj_u determine the size of the hypercube along each input component. 
The initial values of uj_l and uj_u are initialized to -0.001 and 0.001 respectively. 
The two parameters are then incrementally updated as uj_l= uj_l-0.001 and uj_u= uj_u+0.001. The region 

ujjlj uuuH __2 : <<  describes a larger hypercube that encloses its predecessor H1. 

A search is then conducted over the database to determine if there are any failures corresponding to the inputs that 
lie in H2. If there are no failures then H2 is set as the new estimate of the fail safe region. 
The incrementing procedure and ensuing database search are continued till a failure is found within the hypercube.  
Once a failure is found some dimensions of the fail safe region are frozen and not updated further. Assuming the 
first failure occurs after (k+1) iteration; the failed input lies in Hk+1 but not in Hk. Those input components whose 
value lie in the annular region of Hk and H(k+1) are frozen. 
The hypercube is updated along the remaining directions until a new failure is encountered at which time the same 
process of freezing those input dimensions is followed. 
The process terminates when no further incrementing is possible without encountering a failure or without violating 

the 1±  limits of the normalized input components. 

L. Utility and Limitations 
The following are some of the useful features of the fail safe cluster:- 

• Based on the data that has been used to construct this region it can be said that failure is not expected while 
inputs lie inside this region. 

• The hypercube characterization helps in data understanding as each input can be isolated. It also provides 
insight such as which input components are critical based on the width of the cube along those dimensions. 
Large width implies that input component has smaller influence on the chosen failure criteria; in contrast a 
smaller width implies higher influence. 

• The hypercube also indicates the direction on either side of the nominal in which the perturbations are more 
harmful.  

Limitations of the fail safe cluster:- 

• The fail safe region generated by the procedure described in this section is only an estimate of the exact 
region.  

• It does not necessarily include all the non-failed samples.  
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