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 A game-theoretic approach to the design of robust integrated guidance-control system 
for a moving-mass actuated kinetic warhead is presented. Feedback linearized form of the 
kinetic warhead dynamics and a high-order target model are used in the formulation. 
Nonlinear feedback solution to the robust finite-horizon target interception problem is 
derived using the recently developed multi-stepping algorithm. Due to its computational 
efficiency, the multi-stepping algorithm is suitable for real-time implementation. 
Interception of targets in the presence of modeling uncertainties is demonstrated in 
nonlinear engagement simulations. 

I. Introduction 
ntegrated synthesis of missile guidance and control systems has been of significant interest in the recent 
literature1-9. These techniques have been shown8 to enhance missile performance by exploiting the synergism 

between guidance and control (autopilot) subsystems. By establishing additional feedback paths in the flight control 
system, integrated design methods allow the designer to realize beneficial interactions between these subsystems. A 
brief discussion on the motivation for designing integrated guidance-control systems will be given in Section II. 
 The present research focuses on the design of robust integrated flight control systems for moving-mass actuated5 
kinetic warheads. Since these vehicles must intercept the targets within a specified time interval, the flight control 
task is a finite-horizon control problem. The present research has its basis in recent work7 on fixed-interval 
integrated guidance-control systems, and an efficient numerical algorithm10 for computing finite-interval optimal 
control.  Although the robustness of fixed-interval guidance-control laws7 has been verified in Monte-Carlo 
simulations, that research did not explicitly include the robustness requirements in the design process. 

The finite-horizon integrated guidance-control problem is formulated here as a differential game11 in which the 
nonlinear controller is made robust with respect to worst-case, bounded disturbances. The nonlinear dynamics of the 
kinetic warhead and the target are first transformed into a linear, time-invariant form using feedback linearization12-

14. The differential game corresponding to the robust control problem is then formulated with respect to the feedback 
linearized dynamics.  Note that the present formulation of the feedback linearized robust finite-interval control 
problem is closely related to some of the control problems discussed in Reference 15. Note that a robust control 
approach similar to the present formulation has been previously proposed16 for the infinite-horizon nonlinear control 
problems.  The system dynamics and the feedback linearization scheme will be discussed in Section III.  

The Hamiltonian system derived from the necessary conditions for optimality11 is solved using the multi-
stepping algorithm. The formulation and solution of the finite-horizon robust integrated guidance-control system 
design will be discussed in Section IV. Target engagement results using the finite-horizon robust integrated 
guidance control law will be given in Section V. Conclusions from the present research are given in Section VI. 
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II. Integrated Guidance-Control Systems  
 Traditional approach to missile guidance and control system design has been to neglect interactions between the 
guidance and control systems, and to treat individual subsystems separately. Missile dynamics is split into relative 
position dynamics and short period dynamics components. Relative position dynamics is used to synthesize the 
guidance law, while the short period dynamics is employed in the autopilot design to stabilize the airframe and to 
track guidance commands.  Designs are generated for each subsystem and then assembled together. If the overall 
system performance is unsatisfactory, subsystems are re-designed to improve the system performance. Due to its 
iterative nature, this latter part of the design process can be highly time-consuming and expensive. 
 Figure 1 illustrates the differences between traditional flight control system and the integrated guidance-control 
system. In the conventional approach, the guidance law does not employ the missile body rates or sensed 
acceleration components to generate autopilot commands. As a result, in engagement scenarios requiring agile 
maneuvers, the guidance commands can sometimes exceed the autopilot performance limits. If the autopilot 
employs integral feedback loops for improved command tracking response, these guidance commands can drive the 
flight control system unstable. Additionally, since the autopilot does not use target relative missile position and 
velocity components for feedback, it cannot adjust its response to accommodate for agile target maneuvers that may 
occur towards the end of the engagement.  
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(b) Integrated Guidance and Control System 

Figure 1. Conventional and Integrated Guidance-Control Systems 

 Consequently, the traditional design approach requires the autopilot to have a small time constant when 
compared with the guidance system to assure the stability and performance of the overall flight control system. In 
fact, the autopilot time constant often dictates the achievable interception accuracy of missiles equipped with 
conventional flight control systems17, 18. While the autopilot time constant requirement can be easily met when the 
missile is far away from the target, it becomes increasingly difficult as the relative distance gets smaller. This is due 
to the fact that most guidance laws are functions of time-to-go, which make their guidance systems faster as the 
missile gets close to the target. In fact, it has been shown that conventional flight control systems can sometimes 
become unstable as the missile approaches the target19. 
 On the other hand, in the integrated approach, the guidance and control functions are realized using all the 
available measurements. This fact makes the system is less likely to encounter saturation and stability problems. 
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Moreover, integrated design approach eliminates the iterative steps required to ensure the compatibility between the 
speed of response of the guidance and autopilot systems. 
 While there are definite operational advantages in employing integrated guidance-control systems, their design is 
complicated. This is due to the fact that the increased dimension of the nonlinear control problem makes it awkward 
to apply conventional gain-scheduling design methodology. These high-order designs may require gain scheduling 
not only with respect to the airframe performance variables, but also with respect to the engagement geometry. 
Although nonlinear control system design techniques can make these problems more tractable, symbolic 
manipulations required for their development can be formidable. Recent advancements in computer-aided nonlinear 
control system design technology20, 21 offer more direct approaches for integrated system design, and avoid the need 
for any symbolic manipulations.  The following section will discuss the kinetic warhead dynamics and the feedback 
linearization methodology. 

III. Moving-Mass Actuated Kinetic Warhead and Feedback Linearization 
The dynamics and control of a moving-mass actuated kinetic warhead was discussed in Reference 5.  As 

illustrated in Figure 2, vehicle control is achieved by moving the actuating masses to alter the center of mass relative 
to the external forces. For instance, if the rocket motor thrust is aligned with the vehicle longitudinal body axis 
containing the nominal center of mass shown in Figure 2, moving the center of mass off the body centerline will 
result in moments about the pitch - yaw axes.  Additionally, roll moments will be generated if the thrust or drag has 
an angular misalignment with respect to the longitudinal axis, or if the vehicle is subject to an aerodynamic lift 
force.  The moving-mass control concept has been shown to be effective5 for controlling the kinetic warhead equally 
well in space when the KW is thrusting, or in the atmosphere, when the vehicle experiences aerodynamic forces.  

While the design of flight control systems using moving-mass actuation appears to be conceptually 
straightforward, difficulties arise due to the highly coupled and nonlinear nature of the system dynamics.  This is 
partly due to the fact that in addition to causing changes in the vehicle center of mass, the moving-mass control 
system will exert inertial forces on the airframe. Moreover, the moving-masses will change the instantaneous 
moments of inertia of the flight vehicle, which will then contribute to changes in its dynamic response.  The kinetic 
warhead flight control system designs must deliver the desired interception accuracy while accommodating these 
dynamic effects. Reference 5 showed the feasibility of designing nonlinear flight control systems for moving-mass 
actuated kinetic warheads to meet the accuracy requirements in both exo-atmospheric and atmospheric target 
interception scenarios. An infinite-horizon integrated guidance-control system regulating the pitch and yaw line-of-
sight rates to achieve target interception was discussed that work. 
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Figure 2. Moving-mass Actuated Kinetic Warhead Concept 

The dynamic model of the kinetic warhead was derived in Reference 5, with respect to a coordinate system given 
in Figure 3. Starting from an initial position relative to the target, the interception occurs when the components of 
the relative position vector between the KW and the target Δx, Δy, Δz goes to zero. Since the relative position 
component Δx  is not generally a controlled variable, the dynamics of the other two position components are used in 
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guidance law derivation. This inertial frame for defining the relative position components is termed as the line-of-
sight frame, and is chosen such its x-axis coincides with the line of sight vector at the initial time. 
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Figure 3. Kinetic Warhead and Target Engagement Scenario 

The control mechanism can be illustrated through the following flow of the control variables through the system 
states.  
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In the foregoing symbolic representation, the variable ycδ is moving-mass position command to the y actuator and 

zcδ is the position command to the moving-mass position command to the z actuator. The variables uy, uz are the 

forces applied by the linear actuators moving the masses, and zzyy ,,, δδδδ &&  are the position and rates of the moving 
masses. Kinetic warhead body rates are given by the variables q and r; and θ , χ are the pitch and yaw attitudes. 
Finally, the variables zy ,ΔΔ && are the components of the relative velocity vector in the line-of-sight frame. 
 The expression (1) states that that the commands to the moving-mass actuators cause actuator forces to be 
applied on the masses, which in turn cause them to develop rates and consequently displacements. These 
displacements cause center of mass movement, creating control moments from external forces, thereby causing pitch 
and yaw body rates. These body rates change the kinetic warhead attitudes, producing changes in the direction of 
flight.  

 Present research assumes proportional plus derivative servos for the moving-mass actuators, and contain feed-
forward compensation for the kinetic warhead lateral acceleration. The moving-mass servo control laws are of the 
form: 

yyyvyycpy amk)(ku +−−= δδδ & ,  zzzvzzcpz amk)(ku +−−= δδδ &     (2) 

Here, kp and kv are the position servo gains, yδ and  zδ are the actual positions of the moving masses,  ay and az are 
the acceleration components along the body-frame y and z axes, my and mz  are the moving-masses along the y and z 
body axes. 

Starting from the control flow definitions given in equation (1), and a numerical simulation model of the kinetic 
warhead, the software discussed in Reference 20 can construct feedback linearized form of the system dynamics. 
The numerically feedback linearized system dynamics can then be used for control law design. A double integrator 
target model, falling under the action of gravity is assumed in the present work. Relative position dynamics are 
given by: 
 

kztzzkytyy aaaa −=Δ−=Δ )2()2( ,           (3) 
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The target acceleration components tzty a,a will be assumed to consist of known components and 

uncertainties tzty a,a ΔΔ . The relative position dynamics including the target acceleration uncertainty is given by: 
 

kztztz
)2(

zkytyty
)2(

y aaa,aaa −+=−+= ΔΔΔΔ      (4) 
 

Since the feedback linearized dynamics of the kinetic warhead involves six differentiations of the relative position 
components, it will be assumed that the uncertainty in the target motion can be specified in terms of the fourth 
derivatives of tzty a,a ΔΔ .  

The feedback linearized dynamics of the kinetic warhead – target dynamics, including the target acceleration 
uncertainty is of the form: 
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The functions zzzyyzyyzy GGG,G,F,F are state-dependent nonlinear functions. In order to facilitate the design of 
guidance-control laws, the first two terms on the right hand side of Equation 5 are replaced by pseudo inputs upy and 
upz. 
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The fourth derivative of the uncertain target acceleration vector is treated as an unknown, bounded disturbance 
vector in the control law derivation. 
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The feedback linearized system dynamics in Brunovsky canonical form is given by:  
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 The superscripts within parenthesis indicate the order of time derivative. In all that follows, the state vectors 
corresponding to the feedback linearized dynamic system are denoted as: 
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IV.  Robust Finite-Interval Integrated Guidance-Control Law 
Consider the linear dynamical system: 
 

( ) WUBXAtX Γ++=&                    (9) 
 

X is the n dimensional state vector, U is an m dimensional control vector and W represents an l dimensional 
unknown disturbance vector. The system matrices An×n , Bn×m and Γn×l are assumed to be time invariant for the 
following development. Note that the algorithms described in the following can readily accommodate time varying 
dynamics.  Since the disturbance vector is unknown, it will be assumed that it acts on the system in such a way as to 
maximize the performance objective the control system is attempting to minimize. 
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Consider the min-maximization of a quadratic performance index of the form: 
 

( ){ }τμ dWWRUUQXXXSXmaxmin tf
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Here,  Xf = X(tf) is the state vector at the final time tf, and the lower limit of integration t0 represents the current time 
t. Time-to-go is defined as: tf - to.  The negative sign in the term containing the unknown disturbance identifies it as 
the maximizer. Following the missile guidance literature, time-to-go will be computed in the following using the 
range and range rate as: 

Rate Range ousInstantane
Range ousInstantanet go2 −=          (11) 

 
Sf is a positive semi-definite terminal state-weighting matrix.  Q is a positive semi-definite state-weighting matrix 
and R is a positive definite pseudo-control weighting matrix. The parameter μ is unspecified, and is determined 
through an iteration22. Starting from ∞, the value of μ is decreased until the differential game fails to yield a positive 
value of the cost function. 
 The necessary conditions for the optimality of the differential game formulated using the performance index (10) 
and the differential constraints (9) yield the optimal control law as:  
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The corresponding worst-case disturbance is given by:  
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The costate vector can be determined by solving the Hamiltonian System:  
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The symbolic solution to the linear dynamic system (14) is given by: 
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The solution to the two-point boundary value problem in Equation (14) can be constructed from the above 

symbolic solution if the state transition matrix of the Hamiltonian system can be computed for the given time 
interval.  However, computation of the state transition matrix over large time intervals will generally lead to 
numerical difficulties.  

A numerical algorithm for solving linear two-point boundary value problems such as the Equation (14) was 
given in Reference 10.  In that approach, termed the multi-stepping algorithm, the given time interval divided into 
smaller intervals improve the numerical condition of the state transition matrix, to derive the solution to the two-
point boundary-value problem. The algorithm is based on the idea that for sufficiently small time intervals, the state 
transition matrix can be calculated for any linear system.  For the sake of clarity in the discussions, the multi-
stepping algorithm will be outlined in the following. 

As a first step, divide the given time interval [0 tf] into subintervals of equal length ‘tl’ such as [0 tl], [tl 
2tl],…….[(n-1)tl  tf]. Note that the algorithm can be readily modified to accommodate unequal subintervals. The 
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length of the subinterval is chosen such that the state transition matrix is numerically computable over the interval. 
The state transition matrix for each of these intervals is: 

 
......eeeeeN )tt(MMt)ttt(M)tt(MMt 23l1l112l −−+− =====        (16) 

 
The multi-stepping algorithm employs the relationship between the algebraic relationship between the state and 
costate co-state vectors to solve for the unknown boundary conditions. For the two-point boundary-value problem 
(14), it can be shown10 that the states and the costates can be related as: 
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The expression (17) uses the n×n submatrices of the subinterval state transition matrix:  
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Note that the matrix Si is the solution to the differential Riccatti equation. The initial value of the costate can be 

found by carrying out the recursions in (17) to the initial time,  t=0. 
 

           000 XS=λ               (19) 
 
The initial value of the costate vector can then be used to determine the optimal control and the worst-case 
disturbance at the initial time as: 
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At each time instant, the initial value of the optimal control can considered as the feedback control against the 

worst-case disturbance. This differential game solution is used in the following section to derive the robust 
integrated guidance-control law for target interception. 

V. Robust Integrated Guidance-Control Law for Target Interception  
      The target interception problem is posed as two finite-horizon differential games in the vertical and horizontal 
planes.  The feedbacl linearized dynamics naturally decouples the system dynamics in these planes. The 
performance indices employed are:  
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From Section II, the state vector has six elements in each plane, and each plane has a scalar control variable.  For 

the present research, the unknown disturbances are assumed to be scalars. The control and state weighting matrices 
used for the present study are: 

 
R = 1e-2, Q(3,3) = 10000; Q(4,4) = 100, Sf(1,1) =1e8 

  
Other components of the state weight matrices Q and Sf are assumed to be zero. The solution to this game is 
obtained using the multi-stepping algorithm using 20 subintervals. As stated in Section II, the time-to-go is 
computed as the ratio of the range and range rate. After several iterations the value of μ  that will yield a positive 
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solution to the game was found to be 100. Identical design parameters were used for both horizontal and vertical 
plane guidance laws. 

Performance of the integrated guidance-control law is next evaluated in a simulation. The block diagram of the 
simulation is given in Figure 4. A free falling target dynamic model is implemented in the control law derivation.  It 
should be noted that the disturbance acceleration is obtained by integrating the worst case disturbance four times.  
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Figure 4. Block Diagram of the Robust Finite-Interval Guidance-Autopilot Simulation 

 
For performance evaluations, the initial conditions on the target are chosen such that the target is descending 

from an altitude of 110,000ft and is 50,000ft away from the kinetic warhead in the North direction and 1,000ft away 
along the East direction. The kinetic warhead is ascending from an altitude of 60,000ft with a flight path angle of 45 
degrees. Initial flight path angle of the target is -42degrees. Initial velocities of both the target and kinetic warhead 
are set to 6,000ft/s.  Initial conditions on the positions and velocities of the moving masses, and body-rates are 
chosen to be zero. Initial attitudes of the kinetic warhead are chosen to result in zero angle of attack and angle of 
side-slip.   

Figure 5 gives the target and the kinetic warhead trajectories in the 3-D space. The horizontal plane trajectories 
given in Figure 6 clearly shows the target attempting to maneuver away from the kinetic warhead towards the end of 
the interception. The worst-case disturbance acceleration components in the horizontal and the vertical planes, 
obtained by integrating the worst case disturbance four times are shown in Figure 7 and Figure 8. It may be observed 
that the worst-case disturbance appears to increase monotonically from its initial values. The time histories of the 
actuating masses during the engagement are given in Figure 9 and Figure 10. Both the commanded and the actual 
positions are shown in these figures. The moving mass positions are normalized with respect to the maximum 
displacement of the masses. The terminal miss distance for this engagement was 1.7ft. 

Several other engagements have been simulated at the time of this writing. Performance comparisons previous 
formulations5, 7, 10 are currently in progress. 
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Figure 5. 3D Engagement Trajectories 

 

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

16

18

20

22

24

26

28

30

32

34

East Position(Kft)

N
or

th
 P

os
iti

on
(K

ft)

 

 

KW
Target

 
Figure 6. Horizontal Plane Trajectories 
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Figure 7. Free Falling and Worst Case Acceleration Components in the Horizontal Plane 
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Figure 8. Free Falling and Worst Case Acceleration Components in the Vertical Plane 
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Figure 9. Commanded and Actual Positions of the Actuating Mass along in the Pitch Axis 
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Figure 10. Commanded and Actual Positions of the Actuating Mass along the Yaw Axis 
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VI. Conclusions 
This paper described the design of a finite-horizon, robust integrated guidance-control system for a moving-mass 

actuated kinetic warhead.  The robust nonlinear control problem was formulated as a differential game using the 
feedback linearized dynamics of the kinetic warhead, and a free-falling target subjected to unknown disturbances. 
Feedback solution to the game-theoretic control problem was obtained using the multi-stepping algorithm. Results 
for a typical target engagement were given. Future research will compare the performance of the robust integrated 
guidance-control law with more conventional guidance-control system designs.  
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