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Abstract
Control design tasks often require the use of trial-

and-error search methods to obtain a satisfactory
solution.  Depending upon the nature and the number of
“tuning” parameters or functions, the search process can
be very discontinuous and nonconvex.  The genetic
search methods are a recently developed family of
techniques for optimization which offer certain
advantages over other techniques.  These include
greater freedom in defining cost functions and
constraints, and the ability to automate the design
process.  Most notably, though, is the ability to
construct new control laws and the potential to generate
non-intuitive solutions as well.  This paper demonstrates
the application of genetic search methods to design a
Pilot-Activated Recovery System (PARS) for a modern
fighter aircraft.  The PARS is a guidance law that
transfers the aircraft from any initial attitude to a wings-
level, nose-up, recovered flight condition.  This system
is useful in cases of pilot disorientation.   A 6 degree-of-
freedom nonlinear model of a modern, high-
performance aircraft is used for design.  The genetic
search seeks to produce nonlinear feedback functions to
meet the specified goals and constraints.  This intricate
problem highlights some of the advantages of this
emerging search technique.

I. Introduction
Various methods are available for designing

guidance and control laws for aerospace vehicles.
Sometimes, guidance laws are obtained through optimal
control theory.  In order to use this approach the
engineer must define some performance index.  The
performance index must have certain properties,
including continuity, smoothness, and a practical limit
on the complexity, so that it will lend itself to
mathematical manipulations.  Often, it can be difficult
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to accurately capture the true design goals in a single
performance function.  In aerospace applications there
is often a large set of design goals.  The control design
process relies on the intuition of the engineer to select
an appropriate performance index.  However, it may not
lend itself to further analysis.  Automating this process
would have considerable benefits.

Traditional optimization methods are strictly
numeric, so that they work only on parameters, while
the guidance or control law structure remains fixed.
However, the recent development of genetic methods
offers the possibility of broadening the scope of
computer-based optimization to include explicit
functions and expressions.  Two distinct advantages of
genetic methods are the capability to define non-
traditional performance indices, and the capability to
manipulate the control law itself, rather than just
parameters.  Moreover, these methods do not require
continuity or smoothness of the performance index or
constraints.

This paper demonstrates the use of genetic search
methods to design a Pilot-Activated Recovery System
(PARS) for a modern fighter aircraft.  The PARS is a
guidance law that transfers the aircraft from any initial
attitude to wings-level, nose-up, recovered flight.  The
PARS logic is designed to work through the aircraft's
command augmentation system.  The overall system is
shown in Fig. 1.  Several studies have considered the

PARS problem1,2, or the related ground collision

avoidance system (GCAS)3.  References 1 and 2
described a system in which separate maneuvers were
defined, depending on the initial condition.  The goal of
the present work is to obtain a single guidance law that
will work for arbitrary initial conditions, excluding
extreme conditions such as spins.  What makes this
problem a good example for genetic methods is that the
objective is to achieve recovery without violating the
constraints.  Constraint violations are determined by
examining time histories.  Therefore, this problem does
not lend itself well to customary methods of analysis.
The genetic search process is provided with
mathematical functions and operations through the
initial population, which it uses to synthesize new
control laws, and simulates the closed-loop system to
obtain a fitness value (i. e. cost).
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Section II will discuss genetic search methods, the
problem will be defined in Section III, and Section IV
will present some results.

II. Genetic Algorithms and Genetic Programming
The basic concept of genetic algorithms has been

around for a long time, but the modern revival began

with the work of Holland4, who showed how the
evolutionary process could be applied to artificial
systems.  The genetic algorithm is a mathematical
algorithm which transforms a set (population) of
mathematical objects (members) into a new set using
operations similar to the process of natural selection, as
described by Charles Darwin in his well-known

treatise5.  The main operations are reproduction,
crossover, and mutation.  Each new population is called
a generation.  The fitness of each member of the current
generation is evaluated according to some specified
function.  The members with better fitness are more
likely to be selected to be carried over to the next
generation (reproduction) or used to create offspring
(crossover) which will be included in the next
generation.  Members with poor fitness are more likely
to be eliminated from the population.  Members can
also be selected at random and altered  (mutation).

Throughout the 1980’s, extensions to the standard

genetic algorithm were proposed6,7.  In the standard
genetic algorithm the members are usually fixed-length
strings.  The strings are made up of binary numbers
which can represent real numbers or actions (i.e. fast vs.
slow, high vs. low, etc.).  A string may therefore
represent a set of numbers or a sequence of actions.  By
breeding and mutating these strings, new combinations
are formed, and the new strings are evaluated for
fitness.  However, the length of the string, and the
structure of the solution, is always fixed in genetic
algorithms.  In the more recent genetic programming
methodology, the complexity of the members

undergoing adaptation is much greater.7  The members
may be mathematical expressions or rules such as
logical operators.  In this way a genetic algorithm can
be used to create computer programs to solve a specific
problem.  According to Ref. 7, “...the structures
undergoing adaptation in genetic programming are
active.  They are not passive encodings of the solution
to the problem.  Instead, given a computer on which to
run, the structures in genetic programming are active
structures that are capable of being executed in their

current form.”7  It is this process of creating programs
that leads to the term “genetic programming.”  There
are variations of the classical genetic algorithm and
genetic programming, but they all share the basic

concepts, so they are referred to here collectively as
genetic search methods.

In recent years, several authors have applied
genetic methods to flight control problems.  In Ref. 8,
genetic search methods were used to design nonlinear
control laws for a longitudinal model of an A-4 aircraft.
Both autopilot controllers and guidance laws were
developed using this methodology.  In Ref. 9 fixed-
order dynamic compensators were designed with the
objective of pole placement.  In Ref. 10 genetic
algorithms were used to design decentralized controllers
by matching performance with existing, centralized
controllers.  Classical control was used with genetic
algorithms in Refs. 11 and 12.  A modified LQR design
was used in Ref. 13, and in Ref. 14 H-infinity
controllers were designed using genetic methods.  In
these problems only parameters were selected in the
design.  The present study will use a genetic search to
design a PARS, where an assortment of mathematical
functions will be used to construct nonlinear feedback
guidance laws.

III. Problem Definition
This section will describe the model used, the

fitness, the structure of the system, and the procedure
for obtaining a solution.
Model

The model used for design is a 6 degree-of-freedom
simulation of an modern fighter aircraft and is
implemented in the system simulation environment
SIMULINK ®.  The rigid body is modeled while flexible
modes are not, although the aerodynamic model does
partly account for flexibility.  Actuator and sensor
models were excluded.  A command augmentation
system, described in Ref. 15, is used to control the
aircraft.  Commands to the closed-loop system are
normal acceleration and roll rate; an additional loop is
included to control velocity via the throttle.  By
convention, the positive z direction is downward, and
therefore, straight and level flight is described by -1 g
normal acceleration.

Fitness
In Ref. 1, the objective was to bring the aircraft

from any initial attitude to a wings-level, nose-up,
recovered state.  “Nose-up” was defined by the final
flight path angle being between 1 and 10 degrees.  In
this work, the “recovered state” is interpreted to mean
zero roll angle, 1 g load factor (zero inertial normal
acceleration), zero roll rate and pitch rate, and the pitch
angle close to the flight path angle, which can also be
stated as having a small angle of attack.  Since angle of
attack and load factor are related for small
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perturbations, the use of normal acceleration in the
fitness calculation should keep the pitch angle close to
the flight path angle.  No guidelines were given
regarding the final airspeed and altitude, so these were
left open, within reasonable limits.

For the benefit of the pilot, commands should not
be too severe.  The limits specified in Ref. 1 and used
here were as follows:

roll rate:  180 deg/sec max.
roll acceleration:  285 deg/sec2 max.
load factor:  5 g max., 0.5 g min.
load factor onset:  4 g/sec max.

As a practical matter, the following constraints were
also imposed:

dynamic pressure:  50 psf min
altitude:  50,000 ft. max., 100 ft. min.

In order to use any optimization technique, some
performance criterion or criteria must be established.
Performance objectives were not easy to quantify in this
case, since the recovery process was mostly a problem
of constraint satisfaction.  However, in the event that
more than one member satisfies all constraints, some
way is needed to distinguish among them.  It was
decided that attitude error and altitude change during
the recovery would form the basic fitness functional.
This was realized with the time-weighted integral of
error squared for the attitude variables.  In each channel
the function is

t
w x − xf( )ti

t f∫
2

dt

where w is a weighting function, x is the variable in
question, and xf is the desired final value.  Including the
time t in the function effectively increases weight as
time increases, which favors a quicker settling time.
The goal is to achieve wings-level, nose-up flight, so the
variables which would be integrated are roll angle,
normal acceleration, and flight path angle.  Altitude
change was included in the fitness as well, the penalty
being the integral of the difference between the current
altitude and the altitude at the time of initiation.  The
fitness value is determined by simulating the closed-
loop system and evaluating the integrals.

In addition to the basic fitness, penalties were
added for exceeding limits (constraint violations).  The
penalty functions were:

roll angle (50*φ(tf))
4

flight path angle (50*(γ(tf)-0.0873))4

roll rate (100*p(tf))
4

pitch rate (100*q(tf))
4

max acceleration 1000*(nzmax + 5.0)2

if nzmax < -5.0 g

min acceleration 1000*(nzmin + 0.5)2

if nzmin > -0.5 g

max onset 1000*(dg/dtmax - 4.0)2

if dg/dtmax > 4.0 g/s

max altitude 1000
if max(h) > 50000 ft.

min altitude 1000
if min(h) < 100 ft.

dynamic pressure 2000
if min(qbar) < 50 psf

where angles and rates are in radians, and tf indicates

final time.  It is evident from this formulation that the
objective is to minimize the fitness.  If altitude goes
below zero the simulation is halted and the fitness is
assigned a very high value.

The PARS block shown in fig. 1 is composed of
several subsystems, shown in fig. 2.  The PARS logic
block, implemented as an S-function in SIMULINK®,
uses a nonlinear function determined by the genetic
search to compute a normal acceleration command, and
also determines the desired roll angle and velocity.  The
normal acceleration command is fed through a second-
order filter to help shape the command.  The roll angle
is fed into a roll rate command generator which uses a
first-order model and limits.  The velocity command
goes straight to the velocity controller, which is just a
proportional control law, with limits.  Since the engine
response is relatively slow, there is no need to shape the
command.  Each of these subsystems will be discussed
in more detail in what follows.

PARS logic
The logic block contains the control law that comes

from the genetic search.  The control law specifies the
normal acceleration, but the logic determines the other
commands based on the acceleration command. The
PARS logic is set up so that whatever function is
supplied, the normal acceleration command will always
be negative in sign, or what pilots would call positive
gs, since acceleration in the opposite direction is
undesirable.  A conditional statement is used that makes
the acceleration command -1 when the value of the
flight path angle, γ , is between 1 and 8 deg., which is
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the desirable range for the recovered state.  The desired
roll attitude is determined according to the value of γ.
The roll command will roll the aircraft upright if the
aircraft is descending and will roll inverted if the
aircraft is ascending.  If the desired roll angle is ±180
deg., a small bias of ±10 deg. is added to prevent
dithering around 180, where the sign of the roll angle
changes.  The roll command tries to coordinate roll
attitude with the anticipated normal acceleration
command.  Once the aircraft reaches its desired roll
attitude, the normal acceleration command will be in the
correct direction for recovery.

Normal acceleration control
The command generated by the PARS logic is fed

into a filter to help shape the command.  The poles of
this filter have a natural frequency of 3 and a damping
ratio of 0.9; the DC gain is 1.  This filter was included
mainly because the command augmentation system that
was used permitted higher onset rates and overshoots
than the specifications would permit.

Roll rate control
To develop a control law for the roll rate which

covers the entire envelope would require a very
complicated function, because roll rate performance
varies considerably over the envelope.  If a genetic
search had been used, more iterations would have been
required and more simulations per iteration would have
been necessary.  Since the limits were already known,
these were imposed in the PARS setup via the
command generator.  The command generator is shown
in fig. 3.

The input is a desired roll angle which comes from
the PARS logic block, either 0, +170, or -170 deg.; the
10 degree offset from ±180 is used to prevent dithering
where the angle changes sign.  A first-order model of
the desired roll rate response, with a pole at -4,
represents the aircraft response.  The output of this
model goes through a rate limiter to enforce the roll
acceleration constraint.  The output of this block goes
into the limit block, which is detailed in fig. 4.  The
output of the limit block is fed to a relational operator,
and also to a product block, where it is multiplied by the
sign of the rate input.  The relational operator decides
which signal has the smallest magnitude and controls
the switch block to pass either the input rate signal or
the limit signal with the appropriate sign.  The output of
this block is the roll rate command, which is fed to the
command augmentation system and to an integrator
block, whose output will be the estimated value of the
roll angle.  This estimated value is fed back to the input

of the first-order model via a proportional gain.  This
gain was selected to give a satisfactory roll response.
Speed control

The velocity is controlled with the throttle using a
proportional gain on velocity error.  The commanded
velocity is a fixed value which is a rough estimate of the
corner velocity at 10,000 ft, since all maneuvers in this
study were performed below that altitude.  If and when
the maneuver is completed, the PARS block makes the
velocity command equal to whatever the velocity is at
the end of the maneuver.  The controller is shown in fig.
5

Parametrization
The initial population is comprised of the basic

operations of addition, subtraction, multiplication and
division, and assorted mathematical functions including
trigonometric and inverse-trigonometric functions,
hyperbolic and inverse-hyperbolic functions, natural and
common logarithms, exponentials, exponents, square
root, and absolute value.  Variables which might be
useful for the control law and are assumed to be
available for feedback are also included in the initial
population.  These variables include altitude (h), altitude
rate (hdot), flight path angle (gamma), initial flight path
angle (gamma_i), total velocity (Vt), Mach number
(M), dynamic pressure (qbar), and pitch rate (q).  The
integers 1 - 9 are represented by a1 - a9, powers of ten
from -4 to +4 are represented by b0 - b8, and -1 is
represented by m1; addition and multiplication of these
variables can be used to represent any number.  A few
of the members in the initial population were designed
to be able to recover, although not optimally, while the
majority of members were formed arbitrarily, simply to
introduce specific functions and constants into the
population.  It is essential with genetic search methods
to introduce as much variability into the initial
population as possible, since the final result can be
comprised of only those terms, or “traits”, which appear
in the initial population.

Algorithm
Figure 6 illustrates the basic procedure for

designing the PARS.  The algorithm was implemented
in the MATLAB® programming environment.  A
MATLAB® toolbox was developed which provides
functions for carrying out the genetic operations

shown16.  In SIMULINK® it was a simple matter to
add integrators to compute the components of the
fitness function as the simulation was running.  It was
also simple to add the additional penalties by evaluating
the output data from the simulations.
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IV. Results
For the genetic search, three initial conditions were

used to evaluate each member: 10,000 ft, M 1.2, 57.3
degree inverted dive; 5,000 ft, M 0.6, 57.3 degree
inverted dive; 5,000 ft, M 0.6, 40 degree climb.  The
simulation in each case lasts 20 seconds.  Three runs
were conducted using purely random selection of
members for crossover.  The initial populations
contained 20 – 30 members that were constructed
mostly randomly from the various mathematical
functions.  In each run the population size is limited to
500 members.  The number of generations was between
2100 and 3000 for the three runs.  The results were:

run guidance law fitness
1 (γ*γ + a3 * a5) / h * hdot 2114
2 sqrt((a4*gamma*b4*a4*(a1*b4+si

n((b5*a2))*b1/(hdot*hdot/b8*h*a1
*a4))/(a1*h)*hdot*b4))*a2

4017

3 (a7*b4 + a1*b5)*hdot / h 3444

The responses of the best design at various initial
conditions are shown in the figs. 7-12.  It can be seen in
fig. 7 that the normal acceleration exceeds the design
goal of 5 gs slightly, but overall the performance is
good.

One of the difficulties with genetic methods is
knowing when to stop.  With gradient-based
optimization methods, assuming the problem is smooth,
the user can examine the norm of the gradient and if it is
sufficiently small, one can assume that no further
improvement is possible.  With genetic methods,
however, no such indication is available.  In theory, the
fitness can continue to improve as long as the search is
run.  In practice, the algorithm ususally reaches a point
where the fitness does not decrease after many
generations, and many of the members of the population

look very similar.  Koza7 recommends starting with
large initial populations and not running for many
generations.  It is also suggested that several runs be
made with different starting populations.

Another disadvantage of this technique is the
amount of time necessary to generate results.  Each of
the three runs lasted well over 100 hours on a Pentium
II 233 MHz processor.  The simulations themselves
required the most amount of time, but with
modifications they could be made to run faster.
Implementing the problem in lower level programming
languages would undoubtedly increase the speed
considerably, at the loss of the ease of implementation.

V. Summary
An example was presented which demonstrates the

ability of genetic methods to develop nonlinear control
laws.  In the future it would be desirable to include the
speed brake to provide more rapid deceleration and thus
greater maneuverability.  It would also be desirable to
include terrain (i.e. ground slope) in the problem as
well.  Another area of research would be to expand the
envelope for which the PARS is capable of recovering,
such as spins and other adverse conditions, assuming
that the aircraft model could be enhanced to simulate
these conditions.
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Figure 9.  Initial Conditions: h = 5,000 ft, M = 0.6, γ = -57.3 deg., φ = 180 deg.
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Figure 11.  Initial Conditions: h = 5,000 ft, M = 0.6, γ = 40 deg., φ = 0 deg.
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Figure 12.  Initial Conditions: h = 5,000 ft, M = 0.6, γ = 40 deg., φ = 0 deg.


